References

Algina, J., Keselman, H. J., & Penfield, R. D. (2005). An alternative to Cohen’s standardized mean difference effect size: A robust parameter and confidence interval in the two independent groups case. Psychological Methods, 10(3), 317–328. https://doi.org/10.1037/1082-989X.10.3.317
Anaconda. (2022). 2022 state of data science report. https://know.anaconda.com/rs/387-XNW-688/images/ANA_2022SODSReport.pdf
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. https://doi.org/10.1016/j.jml.2007.12.005
Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379–384.
Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418. https://doi.org/10.1098/rstl.1763.0053
Behmer, L. P. (2017). Spatial and temporal aspects of speech planning: An articulographic investigation [PhD thesis]. The University of Nebraska-Lincoln.
Belenky, G., Wesensten, N. J., Thorne, D. R., Thomas, M. L., Sing, H. C., Redmond, D. P., Russo, M. B., & Balkin, T. J. (2003). Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: A sleep dose-response study. Journal of Sleep Research, 12(1), 1–12. https://doi.org/https://doi.org/10.1046/j.1365-2869.2003.00337.x
Bloom, N., Han, R., & Liang, J. (2024). Hybrid working from home improves retention without damaging performance. Nature, 630(8018), 920–925. https://doi.org/10.1038/s41586-024-07500-2
Bommarito, E., & Bommarito, I., Michael J. (2021). An empirical analysis of the R package ecosystem. CoRR, abs/2102.09904. https://arxiv.org/abs/2102.09904
Box, J. F. (1981). Gosset, Fisher, and the t distribution. The American Statistician, 35(2), 61–66. https://doi.org/10.1080/00031305.1981.10479314
Bürkner, P.-C., & Vuorre, M. (2019). Ordinal regression models in psychology: A tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199
Cassidy, S. A., Dimova, R., Giguère, B., Spence, J. R., & Stanley, D. J. (2019). Failing grade: 89% of introduction-to-psychology textbooks that define or explain statistical significance do so incorrectly. Advances in Methods and Practices in Psychological Science, 2(3), 233–239.
Chetty, R., Jackson, M. O., Kuchler, T., Stroebel, J., Hendren, N., et al. (2022). Social capital i: Measurement and associations with economic mobility. Nature, 608(7921), 108–121. https://doi.org/10.1038/s41586-022-04996-4
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Cornell, C., & Berger, M. P. F. (1992). The power of the multivariate analogue of the t test when population variances are unequal. Multivariate Behavioral Research, 27(4), 467–499. https://doi.org/10.1207/s15327906mbr2704_4
Cotton, R. (2013). Learning r: A step-by-step function guide to data analysis. O’Reilly Media.
Cumming, G. (2013). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. Routledge. https://doi.org/10.4324/9780203807002
Di Forti, M., Quattrone, D., Freeman, T. P., Tripoli, G., Gayer-Anderson, C., & al., et. (2019). The contribution of cannabis use to variation in the incidence of psychotic disorder across europe (EU-GEI): A multicentre case–control study. The Lancet Psychiatry, 6(5), 427–436. https://doi.org/10.1016/S2215-0366(19)30048-3
Dobbie, W., Goldin, J., & Yang, C. S. (2018). The effects of pretrial detention on conviction, future crime, and employment: Evidence from randomly assigned judges. American Economic Review, 108(2), 201–240. https://doi.org/10.1257/aer.20161503
Engzell, P., Frey, A., & Verhagen, M. D. (2021). Learning loss due to school closures during the COVID-19 pandemic. Proceedings of the National Academy of Sciences, 118(17), e2022376118. https://doi.org/10.1073/pnas.2022376118
Eysenck, H. J., & Eysenck, S. B. G. (1963). Eysenck Personality Inventory (EPQ, EPI) [Database record]. APA PsycTests. https://doi.org/10.1037/t02711-000
Fisher, R. A. (1925). Statistical methods for research workers. Oliver; Boyd.
Fisher, R. A. (1935). The design of experiments. Oliver; Boyd.
Geisser, S. (1958). An extension of the greenhouse–geisser procedure for multiple‐degree‐of‐freedom contrasts. Biometrika, 45(1/2), 275–277. https://doi.org/10.2307/2333591
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). CRC Press. https://doi.org/10.1201/b16018
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other stories. Cambridge University Press. https://doi.org/10.1017/9781139161879
Gelman, A., & Stern, H. (2006). The difference between “significant” and “not significant” is not itself statistically significant. The American Statistician, 60(4), 328–331. https://doi.org/10.1198/000313006X152649
Goodman, S. (2008). A dirty dozen: Twelve p-value misconceptions. Seminar on Statistics.
Greenhouse, S. W., & Geisser, S. (1959). Methods in the analysis of profile data. Psychometrika, 24(2), 95–112. https://doi.org/10.1007/BF02289823
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. European Journal of Epidemiology, 31(4), 337–350. https://doi.org/10.1007/s10654-016-0149-3
Grolemund, G. (2014). Hands-on programming with r: Write your own functions and simulations. O’Reilly Media.
Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students share with their teachers. Methods of Psychological Research, 7(1), 1–20.
Harford, T. (2021). How to make the world add up: Ten rules for thinking differently about numbers. Bridge Street Press.
Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press. https://socviz.co/
Hedges, L. V. (1981). Distribution theory for glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6(2), 107–128. https://doi.org/10.2307/1164588
Hippel, P. T. von. (2005). Mean, median, and skew: Correcting a textbook rule. Journal of Statistics Education, 13(2).
Huynh, H. (1970). Conditions under which mean square ratios in repeated measurements designs have exact f‐distributions. Journal of the Royal Statistical Society. Series B (Methodological), 32(2), 317–322.
Huynh, H., & Feldt, L. S. (1976). Estimation of the box–greenhouse–geisser epsilon: A note on the violation of the sphericity assumption. Psychometrika, 41(3), 351–360. https://doi.org/10.1007/BF02293858
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning: With applications in r (2nd ed.). Springer. https://doi.org/10.1007/978-1-0716-1418-1
Jones, L., Barnett, A. G., & Vagenas, D. (2025). Common misconceptions held by health researchers when interpreting linear regression assumptions: A cross-sectional study. BMJ Open, 15(1), e093111. https://doi.org/10.1136/bmjopen-2024-093111
Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103(1), 54–69. https://doi.org/10.1037/a0028347
Keselman, H. J. (1980). Testing repeated measures hypotheses when the sphericity assumption is not met. Psychological Bulletin, 88(2), 320–325. https://doi.org/10.1037/0033-2909.88.2.320
Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2001). The analysis of repeated measures designs: A review. British Journal of Mathematical and Statistical Psychology, 54(1), 1–20. https://doi.org/10.1348/000711001159357
Kross, E., Verduyn, P., Demiralp, E., Park, J., Lee, D. S., Lin, N., Shablack, H., Jonides, J., & Ybarra, O. (2013). Facebook Use Predicts Declines in Subjective Well-Being in Young Adults. PLoS ONE, 8(8), e69841. https://doi.org/10.1371/journal.pone.0069841
Lakens, D. (2022). Sample size justification. Collabra: Psychology, 8(1), 33267. https://doi.org/10.1525/collabra.33267
Lambert, B. (2018). A student’s guide to bayesian statistics. SAGE Publications.
Langsrud, Ø. (2003a). ANOVA for unbalanced data: Use type II instead of type III sums of squares. Statistics and Computing, 13(2), 163–167. https://doi.org/10.1023/A:1023260610025
Langsrud, Ø. (2003b). ANOVA for unbalanced data: Use Type II instead of Type III sums of squares. Statistics and Computing, 13(2), 163–167. https://doi.org/10.1023/A:1023260610025
Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric models: What could possibly go wrong? Journal of Experimental Social Psychology, 79, 328–348. https://doi.org/10.1016/j.jesp.2018.08.009
Mauchly, J. W. (1940). Significance test for sphericity of a normal n-dimensional distribution. Annals of Mathematical Statistics, 11(2), 204–209. https://doi.org/10.1214/aoms/1177731915
Maxwell, S. E., Delaney, H. D., & Kelley, K. (2017). Designing experiments and analyzing data: A model comparison perspective (3rd ed.). Routledge. https://doi.org/10.4324/9781315642956
McElreath, R. (2020). Statistical rethinking: A bayesian course with examples in R and Stan (2nd ed.). CRC Press. https://doi.org/10.1201/9780429029608
Oertzen, T. von, Brandmaier, A. M., & Tsang, S. (2010). Zero-inflated and hurdle models for count data in psychology: A tutorial. European Journal of Developmental Psychology, 7(5), 554–572.
Pomiechowska, B., Glawcinski, I., Kompatsiaris, I., & Wagemans, J. (2021). Nonverbal cues that convey social status: A cross-cultural analysis of eye gaze and posture in dyadic interactions. Journal of Nonverbal Behavior, 45(4), 481–504. https://doi.org/10.1007/s10919-021-00404-z
Posit PBC. (2024). Benefit corporation annual report: 2024 annual report. Posit PBC. https://posit.co/about/pbc-report-2024/
Reinhart, A. (2015). Statistics done wrong: The woefully complete guide. No Starch Press.
Rowntree, D. (2018). Statistics without tears: An introduction for non-mathematicians (Revised edition). Penguin Books.
Taleb, N. N. (2007). The black swan: The impact of the highly improbable. Random House.
Thompson, D. M., Wu, J. Y. Y., Yoder, J. A., & Hall, A. B. (2020). Universal vote-by-mail has no impact on partisan turnout or vote share. Proceedings of the National Academy of Sciences, 117(25), 14052–14056. https://doi.org/10.1073/pnas.2007249117
Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
Vanhove, J. (2021). Collinearity isn’t a disease that needs curing. Meta-Psychology, 5. https://doi.org/10.15626/MP.2021.2548
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: Context, process, and purpose. The American Statistician, 70(2), 129–133.
Westfall, P. H. (2014a). Kurtosis as peakedness, 1905–2014. r.i.p. The American Statistician, 68(3), 191–195. https://doi.org/10.1080/00031305.2014.917055
Westfall, P. H. (2014b). Kurtosis as peakedness, 1905–2014. R.I.P. The American Statistician, 68(3), 191–195. https://doi.org/10.1080/00031305.2014.917055
Wickham, H., & Grolemund, G. (2023). R for data science: Import, tidy, transform, visualize, and model data (2nd ed.). O’Reilly Media. https://r4ds.hadley.nz/
Wright, D. B. (1999). Modelling clustered data in autobiographical memory research: The multilevel approach. Applied Cognitive Psychology, 13(4), 337–350. https://doi.org/10.1002/(SICI)1099-0720(199908)13:4<337::AID-ACP582>3.0.CO;2-6
YouGov. (2025). Methodology: How does YouGov conduct public opinion research. https://yougov.co.uk/about/panel-methodology
Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software, 27(8), 1–25. https://doi.org/10.18637/jss.v027.i08